Content Level Access Control for OpenStack Swift Storage

Prosunjit Biswas
Univ. of Texas at San Antonio
San Antonio, TX, USA

ABSTRACT

Swift, the object storage service from OpenStack cloud com-
puting platform is used for storing, managing and retrieving
large amounts of data. Inside Swift, uploaded files, also
known as objects, are organized in containers. Objects in-
side a container are managed to be accessible or restricted
from users through Access Control Lists (ACLs). Swift
ACL, at the finest level, works on a Swift object enforc-
ing who can or cannot access the object. Once an object is
accessible to some one, he gets the full content of the object.
Thus Swift ACL is an “all or nothing” approach.

In this work, we allow Swift users to specify access control
at the content level of a Swift object. The content level
policy describes who can access which part of a Swift object.
When a request comes for downloading (i.e. read) an object,
we check content level policy along with the ACL of the
object. The response of the request is a partial content of
the requested object based on the credential of the requester.
Our prototype implementation is done on Swift objects of
content type ‘application/json’.

Categories and Subject Descriptors

H.4 [Information Systems Applications|: Miscellaneous

Keywords
Content level access control; OpenStack Swift; ACL

1. INTRODUCTION

OpenStack Swift is a highly deployed open source cloud
storage solution. With its unlimited storage capacity, it is
used to store any number of large or small objects. In Swift
terminology, uploaded documents are called objects. A user
can upload or download an object using well defined APIs
or available Swift client programs. But not everyone can
download (i.e. read) every object stored in Swift. In or-
der to maintain who can or cannot access an object, Swift
uses Access Control Lists (ACLs). ACL specifies who can

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

CODASPY’15, March 24, 2015, San Antonio, Texas, USA.

Copyright @ 2015 ACM 978-1-4503-3191-3/15/03 ...$15.00.
http://dx.doi.org/10.1145/2699026.2699124.

Farhan Patwa
Univ. of Texas at San Antonio
> San Antonio, TX, USA
prosun.csedu@gmail.com farhan.patwa@utsa.edu

123

Ravi Sandhu
Univ. of Texas at San Antonio
San Antonio, TX, USA
ravi.sandhu@utsa.edu

or cannot access an object. Unfortunately, the ACL based
approach for Swift is an ‘all or nothing’ approach in a way
that an user can either download (i.e. read) the whole object
or cannot download it at all.

We propose a content level access control mechanism for
objects stored in Swift. This approach lets Swift users spec-
ify who can access which part of a Swift object. To give a
concrete example, consider that a hospital stores its patient
records as Swift objects. These records should be accessed
differently by different personnel. For example, ‘doctors’ can
see certain part while the ‘billing accountant’ can see other
part of the record. Our implementation would let the data
publisher specify policies expressing who can see which part
of the data.

Our prototype implementation is based on JSON format-
ted documents. We use JSON data because recently JSON
has gained immense commercial popularity which is reflected
by developments including JSON document database such
as MongoDB supported by the OpenStack cloud platform,
Twitter’s latest API (v 1.1) which supports only JSON data
and so on.

2. BACKGROUND

2.1 Swift

Swift is a highly available, distributed, eventually con-
sistent object storage which can operate standalone or in-
tegrated with the rest of the OpenStack cloud computing
platform. It is used to store lots of data efficiently, safely,
and cheaply using a scalable redundant storage system [3].
As opposed to conventional storage architectures like file
systems which manage data using file hierarchy and block
storage, Swift manages data as objects. Each object typi-
cally includes the data itself, a variable amount of metadata,
and a globally unique identifier.

Using its well defined RESTful API [5], users can upload
or download objects to and from Swift storage. Inside Swift,
objects are organized into containers which is similar to di-
rectories in a filesystem except that Swift containers cannot
be nested. Again, a user is associated with a Swift account
and can have multiple containers associated with the ac-
count. In order to manage user accounts, user containers
and objects inside a container, Swift uses an Account Server,
a Container Server and Object Servers correspondingly.

When a user corresponding to a user account requests for
an object inside a container (either for uploading or down-
loading), the Account Server looks for the account first in its
account database and finds associated containers with the

account. The Container Server then checks the container
database to find whether the requested object exists in the
specified container and finally the Object Server looks into
‘object databases’ to find retrieval information about the ob-
ject. In order to retrieve an object, the Proxy Server needs
to know which of the Object Servers are storing the object,
and path of the object in the local filesystem of that server.

2.2 Swift ACL

Once an object is stored in Swift, who can or cannot access
the object is determined by Swift Access Control List (ACL).
Swift has different levels of ACL—Account level ACL, and
Container level ACL, for example. Container level ACL is
associated with containers in term of a read action, or write
action or listing action. If a user is authorized read action
on a container through read ACL, he or she can read or
download objects from the container. Similarly, write ACL
enables uploading an object into a container and listing ACL
enables the list operation on the container. Account ACLs,
on the other hand, allow users to grant account-level access
to other users. Of these two types of ACL, Container level
ACL is finer grained in that different containers of a single
account can be configured differently. Nonetheless, Swift
ACL is limited in the following ways.

e Once an object is set accessible to someone, he or she
gets the full content of the object. But there can be
some sensitive information that the publisher wants to
hide out.

e Swift ACL allows sharing an object with others, but
it does not allow to share objects selectively at the
content level.

2.3 JSON (JavaScript Object Notation)

JSON or JavaScript Object Notation is a data represen-
tation format which uses human readable text to represent
data. In JSON, data is represented in one of two forms—as
an object or as an array of values. A JSON object is defined
as a collection of key-value or attribute-value pairs where a
key or an attribute! is simply a string representing a name
and a value which is either one of the following primitive
types—string, number, boolean (true or false), null or an-
other object or an array. On the other hand, an array is
defined as a set of an ordered collection of values (as de-
fined above) starting from index zero. The formal definition
of JSON data format is given in [1]. JSON structure has
following characteristics

1. A JSON document forms a hierarchical structure which
is a rooted tree.

2. In the rooted tree, leaf nodes represent text data of
the document and non-leaf nodes are used to give the
data a name and thus organize it.

3. In the rooted tree, a node can be uniquely identified
by traversing the document from the root node to the
target node.

'To avoid confusion with the use of attribute for attribute-
based access control we will exclusively use the term key in
this paper.

124

“personal_record”:{
“name”:"Alice”,
“DOB”: “1/1/1990”,
“identification”:{

“DL”: “25526509”,
“SSN”: “32433149”

}

“émployment_record”:{
“Designation”: “employee”,
“salary”:50000

}

Figure 1: A sample JSON Document containing
records of an employee.

3. LABEL BASED ACCESS CONTROL

In order to protect a JSON document stored as a Swift
object, we assign each JSON item (i.e. value of a JSON key)
an object-label and each user a user-label. Then we specify
policies in the form of (user-label values, action, object-label
values) which means that objects labeled with any of ‘object-
label’ values are allowed to be accessed by the users labeled
with any of ‘user-label’ values for the specific ‘action’. Here
we present an informal description of the model and its open
source implementation is available in [4].

3.1 Model Components

In LaBAC (Figure 2), we have one attribute assigned to
objects and one attribute assigned to users. Object attribute
is named object-label and user attribute is named user-label.
These attributes are set valued attributes and the values of
the attributes may form a partial order.

Object: Object is any resource we want to protect with
the model. Examples include a JSON document or items
inside a JSON document.

Object-label: Object-label is the attribute assigned on the
objects. The values of this attribute may form a partial
order.

User and user-label: User-label is the attribute assigned
on each user. In a simple case, user-label values can be the
set of roles assigned to the user. The values of this attribute
may form a partial order.

Action: Action is the list of available actions to be exer-
cised on the objects.

Policy: A policy in this model is a tuple of (user-label
values, action, object-label values). The policy is interpreted
such that objects labeled with any of ‘object-label’ values
are allowed to be accessed by the users labeled with any of
‘user-label’ values for the specific ‘action’.

Attribute Hierarchy: In our model, both object-label and
user-label values may form a hierarchy or more specifically
a partial order. The effect of attribute hierarchy is shown
in Figure 3. As we can see in the figure, if a policy allows
an action for user-label [,; on object-label l,;, due to the
attribute hierarchy, all users having a equivalent or senior
label than [,; can also access object-label l,; or its junior
labels.

hierarchy

: | |
el

action

«_»many-to-many relation

hierarchy participation

object-label objecD

Figure 2: Label Based Access Control Model.

direction of propagation of
permissions with user-label hierarchy

ok _ ////’, uk
- - / . 4
> .
- e
~ - . 4
> PE

1” < - I

oj /,/ u

P _> given policy

| P4 I

oi ui — —pm policy inferred by

user-label hierarchy

direction of propagation of permissions
with object-label hierarchy

rrrrrrrrr - policy inferred by
object-label hierarchy

Figure 3: Propagation of permission with attribute
hierarchy.

4. CONTENT LEVEL PROTECTION

Swift ACL specifies who can or cannot access a Swift ob-
ject but it cannot specify who can access which part of the
object. In order to specify security policies at the content
level, Swift has to be aware of the content type and data for-
mat of the object. In our case, we addressed Swift objects of
content-type ‘application/json’ which is standard JSON for-
mat. How our protection mechanism works is summarized
below.

e JSON items to be protected are identified using JSON-
Path. For example, SSN in JSON data given in Fig.
1 is identified using JSONPath ‘$.personal_record.ide
ntification.SSN’.

object-label values are assigned on the specified JSON
item. For example, to specify that SSN is a sensitive
information, we assign a label ‘sensitive’ on JSONPath
‘$.personal_record.identification.SSN’.

We use LaBAC policy to specify who can access (read)
which object-label. For example, if only users with user-
label ‘manager’ can access sensitive information, then
we specify the LaBAC policy (‘manager’, read, ‘sensi-
tive’).

When using JSONPath to identify a JSON item, one may
want to specify value at the path as a condition. For exam-
ple, salary information (given in Fig. 1) is sensitive only if

125

Keystone
{Identity Provide

- Swift Storage

JSON
Data

<_)

labac policy,

““'--._._,_._‘_._,_,_._—-"’

1, 2: User requests and receives ldentity from Keystone.
3: User present credential to Swift.

4. LaBAC decides which JSON object is accessible.

5. User gets Partial content.

Figure 4: Required Changes in Swift Object Server
for Our Extension

the salary is greater than 50,000. Furthermore, it is also pos-
sible to protect one item based on value of a different item.
For example, identification information (specified by JSON-
Path ‘$.personal record.identification’) of a user is sensitive
when his salary is greater than 50,000.

4.1 Labeling JSON Items

If the JSON document is large, labeling all JSON items
can be tedious. In order to reduce labeling effort, we prop-
agate label assigned on a JSON item to all its descendant
items. For example, if the personal_record item (Fig. 1) is
labeled sensitive, then all its descendant nodes (name, DOB,
identification, DL, SSN) are also labeled sensitive.

S. IMPLEMENTATION

5.1 Changes in Swift Object Server

We have extended the logic of Swift Object Server. In the
existing implementation, when a request comes for down-
loading of an object, Object Server checks the ACL and if
the object is allowed by ACL, the Object Server reads the
object from the disk and pass the whole content to the re-
quester through Proxy-server.

In our implementation (see Figure 4), if the ACL denies
the request, no further check is made and user gets corre-

sponding error messages. Otherwise, we retrieve the object,
content level policy (stored with the Swift Object as meta-
data), user credential (user-label specifically which is the
roles of the user maintained by Keystone) and pass them
to the LaBAC module. LaBAC module processes the re-
quested object based on the policy and user credential, and
removes unauthorized content from the object. Then only
the authorized partial content of the object is returned to
the requester through Swift Proxy-server.

Note that in the implementation, we have used OpenStack
Keystone [2] as the identity provider and we have mapped
user roles provided by the Keystone as user-label values of
the requester.

5.2 Storing of Policies

In our implementation, we have two different types of
policies—LaBAC policies in the form of (user-label values,
action, object-label values) and content-level policies in the
form of (JSONPath, {Labels}). All of these policies are
stored as the metadata of the Swift object. Note that the
Swift object is the JSON document itself.

One challenge of storing policies as metadata of Swift ob-
ject is that Swift does not allow a single metadata item larger
than 256 bytes. To circumvent this limitation, policies are
stored as multiple metadata items.

5.3 Limitation of the Implementation

Our prototype implementation works only on objects of
type ‘application/json’. If requested object is not a JSON
file or the requested object does not have content level policy
set, the requester gets full content of the file.

6. PERFORMANCE

In order to analyze the performance of our implemen-
tation, we compared the download time of a Swift object
enabling content policy and without enabling content pol-
icy. Our analysis (Figure 5) shows that our implementation
works well for Swift object of size smaller than 100KB be-
yond which CLAC does not work efficiently. We believe
this is because our implementation exhausts memory very
soon. We conjecture that pre-labeling objects and enforc-
ing access control in divide-and-concur fashion may improve
performance.

7. RELATED WORK

There have been very few works for access control of JSON
data, although JSON and XML data are very similar and
lots of works has been done at the content level for XML data
[7, 8]. Additionally there are prior works that apply object
labels at the content level [6] for access control purposes.
But, to the best of our knowledge, applying content level
access control for the application context of OpenStack Swift
has not yet been performed.

8. CONCLUSION

As more and more data is being uploaded in the cloud,
data may contain sensitive information. With existing Swift
API, one can either access the full content of an object or
cannot access it at all. We propose an extension of Swift
Object Server where someone can specify policies on a Swift
object at the content level and let different users access dif-
ferent parts of it. We hope that this work would help Swift

126

Comparing download time of Swift objects
with and without Content Level Access
Control (CLAC)

2

W Without
CLAC

= B With CLAC
2 o015

8

D

w

é

g 01

o

o

2

2 o005

Q

1KB 10KB 100KB 1MB 1oMB

Swift Object Size
Figure 5: Performance of our Implementation

users to share objects effectively with others having more
control at the content level.

Acknowledgement

The authors acknowledge the support of Rackspace for this
work.

9. REFERENCES

[1] JSON Official Website. http://json.org/. [Online;
accessed 09/2014].

[2] Keystone, the openstack identity service.

http://docs.openstack.org/developer/keystone/.

[Online; accessed 09/2014].

[3] Openstack swift offical documentation.
http://docs.openstack.org/developer /swift /. [Online;
accessed 09/2014].

[4] Python Package - Label Based Access Control.
https://pypi.python.org/pypi/labac/0.11. [Online;
accessed 09/2014].

[5] Swift API Official Documentation.
http://docs.openstack.org/api/
openstack-object-storage/1.0/content/. [Online;
accessed 09/2014].

[6] N. R. Adam, V. Atluri, E. Bertino, and E. Ferrari. A
content-based authorization model for digital libraries.
Knowledge and Data Engineering, IEEE Transactions
on, 14(2):296-315, 2002.

[7] E. Bertino, S. Castano, E. Ferrari, and M. Mesiti.
Specifying and enforcing access control policies for xml
document sources. World Wide Web, 3(3):139-151,
2000.

[8] E. Damiani, S. De Capitani di Vimercati, S. Paraboschi,

and P. Samarati. A fine-grained access control system
for xml documents. ACM Transactions on Information
and System Security (TISSEC), 5(2):169-202, 2002.

